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Abstract

This paper deals with finite element analysis of the fluid–structure systems considering the coupled effect
of elastic structure and fluid. The equations of motion of the fluid considered inviscid and compressible are
expressed in terms of the pressure variable alone. The elastic structure and the fluid domain are treated as
two separate systems and discretized with finite elements. The solution of the coupled system is
accomplished by solving the two systems separately with the interaction effects at the fluid–solid interface
enforced by a developed iterative scheme. Non-divergent pressure and displacement are obtained
simultaneously through a few numbers of iterations. Studies show the accuracy of the proposed algorithm,
while comparing with the existing ones available in the literature. The parametric study of the coupled
system shows the importance of fluid height and material property of the structure.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The dynamic interaction between an elastic structure and a compressible fluid has been the
subject of intensive investigations in recent years. It is well known that the problem in question
can be formulated at different levels of complexity and ‘completeness’ of physical representatively.
From the classical Westergaard, or ‘added mass’, approach in which water incompressibility and
rigid structure are assumed, one may introduce, separately or in connection, the compressibility of
water and the flexibility of structure. Some simplified approaches are available in which fluid–
structure interaction is studied in a decoupled manner. In this type of analysis, the fluid response is
first obtained assuming the structure to be rigid and the resulting pressure field is imposed on the
structure to obtain the structural response. Though such type of analysis leads to a conservative
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design of the structure, if resonance between the structure and the energy release mechanism in the
fluid occur it can lead to the development of unsound design. Moreover, if coupled modes are
excited, this approach gives non-conservative results. Thus it is necessary to study the fluid–
structure interaction problems in a coupled manner considering the flexibility effect of
the structure. The most common approach being adopted at present is that both the systems
are coupled and solved as one system [1–4]. Formulations based on displacement variables are
generally chosen for the structure while the fluid is described by different variables such as
displacement, pressure, velocity potential, etc. for such coupled problems. A number of
researchers [4–6] used hydrodynamic pressure as the unknown variable in finite element
discretization of the fluid domain. But the resulting equations in this case lead to unsymmetrical
matrices and require a special purpose computer program [7,8]. Zienkiewicz et al. [9] represented
the equations of fluid domain in terms of a displacement potential. The coupled equations of
motion in this case become unsymmetrical, but irrotationality condition on fluid motion is
automatically satisfied. Many researchers [1,10–12] formulated the governing equations of fluid in
terms of displacements. The advantage of the displacement-based formulation is that the fluid
elements can easily be coupled to the structural elements using standard finite element assembly
procedures. But the degrees of freedom for the fluid domain increase significantly (especially for 3-
D problems). Moreover, the fluid displacements must satisfy the irrotationality condition,
otherwise zero-frequency spurious modes may occur. The variables such as velocity and pressure
have also been used for representing the governing equations for fluid by Fenves et al. [2].
However, requirement of computational time becomes higher as number of unknown parameters
increase in the fluid domain. Thus the need of a large computer storage and expense of vast
computer time usually make the analysis impractical. The solution of the coupled system may be
accomplished by solving the two systems separately with the interaction effects enforced by
iteration [13–17]. The major advantage of this method is that the coupled field problems may be
tackled in a sequential manner. The analysis is carried out for each field and interaction effect is
accommodated by updating the variables of the fields in the respective coupling terms.
Due to complex topographical condition of the dam structures, the finite element method is

recognized as one of the powerful numerical tools in most practical problems. In the finite element
analysis of such problems, difficulties arise mainly because of the large extent of the fluid domain,
where fluid is practically unbounded. Hence, it is necessary to arbitrarily truncate the reservoir
region in order to have a manageable computational domain. A number of far-boundary
conditions have been reported in the literature and they may be broadly categorized as: (i)
imposition of a boundary condition along the truncation surface [5,18–20], and (ii) coupling the
finite element discretization with other type of discretization such as ‘infinite elements’ [21]
‘boundary elements’ [22,23] or with ‘continuum’ solutions [24,25]. There is a common belief that
boundary element method is superior over finite element for the modelling of infinite or semi-
infinite domains. However, in the reported literature [26], the efficiency of boundary element
method in time domain analysis is not ascertained. This is because of the presence of the
convolution integral and singularity of the kernels of the formulation, which requires large storage
space and computational time for the evaluation of the effect of past time history and numerical
integration of the kernels. Moreover, use of boundary element method requires the solution of an
unsymmetrical and unbounded matrix. Hence, this method does not possess any significant
advantage over the finite element method. On the other hand, the finite element approach has the
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distinct advantage of being straightforward in implementation. The most commonly used
boundary condition along the truncation surface is the Sommerfeld radiation condition [5]. But
the behaviour of the fluid motion at the truncation boundary is not represented truly. Hence, a
large extent of fluid domain is required to be included in the analysis. Saini et al. [21] developed an
infinite element technique for the far field, Clough et al. [27] used the finite element method,
Hanna and Humar [22] used the boundary element methods. In all the above investigations,
frequency-domain analyses have been used. Since as in the frequency domain, using a transmitting
boundary for the reservoir does not have an exact counterpart in the time domain [14,9], seldom
has time-domain analysis been employed. A fundamental assumption in all these studies is to treat
the problem as two dimensional. This assumption is reasonable for gravity dams. The important
conclusions from these literatures are that the compressibility of water cannot be neglected in
analysis, and the elastic properties of dam may alter the pressure significantly.
To compensate the inadequacies of these analyses, a robust and efficient finite element iterative

scheme is developed to study the fluid–structure interaction problems. In this paper, a time-
domain analysis, modelling the infinite fluid domain into a finite one with an efficient truncation
boundary condition adopted by Maity and Bhattacharyya [18], which includes the radiation
effects and can be adopted in the finite element formulation in a simple form, is presented. An
efficient iterative scheme, which enables to obtain simultaneously a divergent free displacement
and pressure in the structure and fluid domain, respectively, at any instant of time, is developed.
Since the two systems are dealt with separately, the resulting matrices are also symmetric. The
pressure is considered as unknown variable parameter in the fluid domain, assuming the fluid as
inviscid and irrotational. The elastic structure is analyzed by two-dimensional plane strain
formulation. The response of the coupled system is obtained by solving the two systems separately
with the interaction effects enforced by iteration. Parametric study has been carried out to
investigate the importance of material property of the structure and the fluid height.

2. Theoretical formulation

2.1. Governing equations for fluid and boundary conditions

Neglecting the internal viscosity, and assuming the water to be linearly compressible with a
small amplitude irrotational two-dimensional movement, the hydrodynamic pressure distribution
in the reservoir system is governed by the pressure wave equation

r2pðx; y; tÞ ¼
1

C2
.pðx; y; tÞ; ð1Þ

where pðx; y; tÞ is the hydrodynamic pressure distribution in excess of the hydrostatic pressure, C

is the acoustic wave velocity in water, t is the time variable and x; y are the space variables. The
hydrodynamic pressure distributions within the domain may be obtained by solving Eq. (1) with
the following boundary conditions.
(a) At the free surface: Considering the effects of surface waves of the fluid, the boundary

condition of the free surface is taken as

1

g
.p þ

@p

@y
¼ 0: ð2Þ
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(b) At the fluid–structure interface: Considering the structure to vibrate with an acceleration of
aeiot in which, o is the circular frequency of vibration; and i ¼

ffiffiffiffi
�

p
1; the condition along the

fluid–structure interface can be specified as

@p

@n
ð0; y; tÞ ¼ �rf aeiot; ð3Þ

where rf is the mass density of fluid, n is the outwardly directed normal to the elemental surface
along the interface, and a is the acceleration of the fluid–solid interface in the direction of n.

(c) At the fluid–reservoir bed interface: Assuming reservoir floor to be rigid, the condition
adopted is

@p

@n
ðx; 0; tÞ ¼ 0: ð4Þ

(d) At the truncation surface: The specification of the far-boundary condition at the truncation
surface has been presented elaborately in Maity and Bhattacharyya [18]. However, the details of
the derived far-boundary condition can be found in Appendix A. The far-boundary condition
adopted in the present case is as follows:

@p

@n
¼

@p

@x
¼ �

p

H
z; ð5Þ

where p is the pressure of the fluid domain and z is given by

z ¼ �

P
N

m¼1

ð�1Þmþ1

2m � 1
eð�fmx=HÞ cos lm

y

H

� �
P

N

m¼1

ð�1Þmþ1

ð2m � 1Þfm

eð�fmx=HÞ cos lm
y

H

� �: ð6Þ

To get the effect of unbounded fluid domain in the truncation surface, z is determined
numerically assuming m to be a large number.

2.2. Finite element implementation

Here the fluid domain is discretized as an assemblage of finite elements, assuming pressure to be
the nodal unknown. By the use of the Galerkin process, the discretized form of Eq. (1) is obtained
as

½E�f .pg þ ½A�f ’pg þ ½G� þ
zC
H

½A�
� �

fpg ¼ �rf ½S�fag; ð7Þ

where {p} represents the vector of nodal pressures for the fluid domain. Expressions for the
matrices [E], [A] [G] and [S] may be found in the paper of Zienkiwicz and Newton [5]. It is
important to note that owing to the implementation of the proposed far-boundary condition, the
form of the discretized equation remains unchanged and there is no extra computation required
except for the modification of a few elements of the matrix [G]. For any prescribed acceleration at
the fluid–structure interface, Eq. (7) may be used to solve the hydrodynamic pressure in the fluid
domain.
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2.3. Governing equations for structure

The equation of motion of a structure subjected to external forces can be written in standard
finite element form as

½M�f .Ug þ ½C�f ’Ug þ ½K�fUg ¼ �½M�fRg .Ug þ fFeg þ fFhg; ð8Þ

where {U}, { ’U}, { .U} are the vector of nodal displacement, velocity and acceleration, respectively.
.Ug is the ground acceleration and {R} is the acceleration transformation matrix. Analyzing the
structural system by plane strain formulation, the elementary stiffness matrices will be

½Ke� ¼
Z
O
½BT�½D�½B� dO; ð9Þ

where [D] is the constitutive matrix and [ %B] is the strain–displacement matrix at any node i: For an
element, the [ %B] matrix can be defined by augmenting contribution from all the nodes of the
element. [M] is the consistent mass matrix. The elementary mass matrix with density rs is

½Me� ¼
Z
O
½N�Trs½N� dO: ð10Þ

The structural damping matrix is constructed by

½C� ¼ a0½M� þ b0½K �: ð11Þ

The constants a0 and b0 are chosen to control the damping proportionately. {Fe} is the time-
dependent external force on the structure, and {Fh} is the hydrodynamic force on the structure
resulting from adjacent fluid.
In the present study, eight-node quadrilateral elements for displacement and four-node linear

element for pressure have been adopted for the solution of Eqs. (7) and (8) with the prescribed
boundary conditions.

3. Iterative scheme

An iterative scheme has been developed to achieve the coupled effect of fluid–structure system
(Fig. 1). At any instant of time t; the resulting hydrodynamic pressure is evaluated by solving
the fluid domain using Eq. (7) with appropriate boundary conditions. At the same time instant,
the developed pressures exert forces on the adjacent structure as hydrodynamic forces and these
are functions of generated pressure. At the same instant of time, the structural element is analyzed
with the forces, developed due to hydrodynamic pressures, using Eq. (8). Due to the additional
forces, the structure undergoes a displacement fUgt: As a result the fluid–solid interface boundary
changes and hence the solution of the fluid domain. The fluid domain is solved again at the same
time instant with the changed conditions of displaced structural boundary. Consequently, the
structural system is also analyzed with the changed forces. Thus at time t; both the hydrodynamic
pressure fpgt and the structural displacement fUgt are iterated simultaneously till a desired level
of convergence is achieved. Thus,

fpiþ1gt � fpigt

fpigt

				
				pe and

fUiþ1gt � fUigt

fUigt

				
				pe; ð12Þ
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where i being the number of iteration, e is a small preassigned tolerance value. A flow chart
indicating the iterative scheme for the solution scheme of coupled fluid–structure interaction
problem is presented in Fig. 2. The most costly operation involved in the above algorithm is to
successively solve two linear equation systems at each iteration. But in the present case, matrices
involved in the solution of the system equations are decomposed into triangular forms at the
beginning of the of the iteration, and thereby only two forward-eliminations and back-
substitutions are required at each iteration step. Thus, the time required to obtain the coupled
response for a particular time instant is minimized in the developed iterative scheme.

3.1. Computation of velocity of fluid

After computing the developed hydrodynamic pressure inside the fluid domain, the acceleration
of the fluid particles is calculated from the following equation:

p;i þ rf ’vi ¼ 0; ð13Þ

where rf is the mass density of fluid and ’vi is the acceleration of the fluid particle. The velocity of
the fluid particle may be evaluated from the known values of acceleration at any instant of time
using well-known Gill’s time integration scheme, which seems to be stable and requires less
computational time over other schemes. At any instant of time t, velocity will be

vt ¼ vt�Dt þ Dt’vt: ð14Þ

Based on the velocities computed at the Gauss points of each individual element, velocity vectors
in the fluid domain are plotted.

4. Numerical results

The examples are related to the analysis of hydrodynamic pressure distribution on two-
dimensional structures exposed to infinite fluid media. In the present examples, the coefficients z
in Eq. (6) are obtained assuming m as 50, where the series converges sufficiently.

Ωf 

Γr 

Ωs 

Γt 

Γfs 

Γf 

∞

Flexible  
Structure 

Infinite Fluid Domain 

Fig. 1. Typical fluid–structure system.
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Example 1. Validation of the proposed algorithm. In order to examine the feasibility and the
accuracy of the proposed iterative scheme, a benchmark problem has been solved and compared
with the existing literature. The data assumed for the problem are: depth of the fluid domain
ðHf Þ ¼ 180m, acoustic wave speed in water ðCÞ ¼ 1438:7m/s, mass density of water
ðrf Þ ¼ 1000 kg/m3, modulus of elasticity of the structure ðEsÞ ¼ 3:5� 1010 kg/m2, the Poison
ratio ðvÞ ¼ 0:2; thickness of the structure ðtsÞ ¼ 15m and mass density of the structure
ðrsÞ ¼ 2400 kg/m3. Fig. 3 shows a typical finite element discretization for the fluid and the
structural domains. The response of the fluid–structure system subjected to ramp acceleration is

Fig. 2. Flow chart of the iterative scheme.
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studied truncating the infinite fluid domain at a distance of L=Hf ¼ 0:5 and results are shown in
Figs. 4 and 5. The results are compared with the method presented by Tsai and Lee [28], which
validates the proposed algorithm.

Example 2. Effect of the thickness of the structure. To study the effect of the thickness of the
structure on coupled fluid–structure system, the dimensions and material properties of the
structure considered are as follows. The geometry of the coupled system is as shown in Fig. 3.

Fig. 3. Finite element mesh of a fluid–structure system.

Fig. 4. Horizontal displacement at the top of the structure subjected to ramp acceleration.
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Height of the structure ðHsÞ ¼ 20:0m; mass density of the structure ðrsÞ ¼ 2400 kg/m3; modulus of
elasticity ðEsÞ ¼ 2:85� 107 kN/m2, the Poisson ratio ðvÞ ¼ 0:20: The depth of water is 20.0m. The
infinite fluid domain is truncated at a distance of L ¼ Hf ¼ 20m. The horizontal displacement

Fig. 5. Hydrodynamic pressure at the bottom of the structure subjected to ramp acceleration.

Fig. 6. Horizontal displacement at the top of the structure subjected to ramp acceleration (for different thickness of the

structure).
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at the top of the structure subjected to ramp acceleration is shown in Fig. 6. The results show
that the magnitude of the displacement becomes high as the thickness of the structure is reduced,
as expected. The hydrodynamic pressure, developed at the bottom of the fluid–structure inter-
face, for different structural flexibility is indicated in Fig. 7. The results, plotted in Fig. 7, depict
that the magnitude of the developed hydrodynamic pressure increases with the increase
of the flexibility of the structure. The same trend is observed in Fig. 9, which shows the
development of the hydrodynamic pressure at the bottom of the fluid–structure interface for
different thickness of the structure, when the system is subjected to the ground acceleration
of El Centro earthquake (Fig. 8). The velocity vectors in the reservoir due to excitation of the
coupled fluid–structure system are plotted in Figs. 10 and 11. In the plot, vertical axis repre-
sents the height of the structure and the horizontal axis represents the length of the reservoir from
the fluid–structure interface. Figs. 10 and 11 clearly show that as the thickness of the structure
decreases, the fluid generates a tendency to rotate more as expected physically.

Example 3. Effect of the modulus of elasticity of the structure. The coupled behaviour of the fluid–
structure system depends on the material properties of the structure. The magnitude of the
modulus of elasticity of the structure is varied by choosing different materials and the responses of
the coupled system are studied. The dimensions and material properties of the fluid–structure
system are similar to the one as considered in Example 2. The thickness of the structure is
considered as 2.0m (ts=Hs ¼ 0:1) in the present analysis. The results are shown in Figs. 12 and 13.
The displacement at the top of the structure subjected to earthquake forces (Fig. 8) is shown in
Fig. 12. The results show that the displacement increases with the decrease of elastic modulus of
the structure. The hydrodynamic pressure developed at the bottom of the structure for different
values of elastic modulus is shown in Fig. 13.

Fig. 7. Hydrodynamic pressure at the bottom of the structure subjected to ramp acceleration (for different thickness of

the structure).
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Example 4. Effect of water level in the dam vibration. Fig. 14 shows the geometry and dimensions
of a typical dam, which is exposed to an infinite reservoir. The mass density, the Poisson ratio and
elastic modulus of the dam are 2400 kg/m3, 0.15 and 3.12� 107 kN/m2, respectively. The height of

Fig. 8. Ground acceleration due to El Centro earthquake 1940 (S90W).

Fig. 9. Hydrodynamic pressure at the bottom of the structure subjected to El Centro earthquake (S90W).
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water level (Hf ) is varied to study its effect on the dam. The infinite reservoir has been truncated at
a distance of half of the water depth. The dam–reservoir system is subjected to earthquake ground
accelerations (Fig. 15). The hydrodynamic pressures developed at the bottom of the dam–
reservoir interface for different height of water level are shown in Fig. 16. The hydrodynamic
pressure at the bottom of the dam–reservoir interface increases with the increase of water level.
The horizontal displacement at the crest of the dam is plotted in Fig. 17. The results show that the
horizontal displacement at the crest of the dam increases with the increase of the water level in the
reservoir.

Fig. 10. Velocity vectors in the fluid domain at 2 s (thickness/height=0.05).

Fig. 11. Velocity vectors in the fluid domain at 2.0 s (thickness/height=0.1).
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5. Conclusion

A general time-domain procedure using finite element technique has been presented for the
dynamic analysis of coupled fluid–structure systems subjected to external excitations. The two

Fig. 12. Horizontal displacement at the top of the structure subjected to El Centro earthquake (S90W).

Fig. 13. Hydrodynamic pressure at the bottom of the structure subjected to El Centro earthquake (S90W).
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different media, i.e., the fluid and the solid region are solved individually and coupled effects are
obtained through the proposed iterative scheme where equilibrium conditions along the common
interface are satisfied. A desired level of convergence is achieved through a few number of
iterations. The major advantages of the proposed model are: (a) The resulting matrices are

Fig. 14. Geometry and finite element discretization of a dam–reservoir system.

Fig. 15. Geometry acceleration due to El Centro earthquake 1940 (S00E).
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symmetric as the systems are dealt with separately. (b) The size of matrices required to be inverted
is comparatively smaller as the two systems are solved in a decoupled manner. (c) The size of fluid
domain will be considerably smaller as the infinite domain is modelled into a finite one using an

Fig. 16. Hydrodynamic pressure at the bottom of the dam for different reservoir height subjected to El Centro

earthquake 1940 (S00E).

Fig. 17. Hydrodynamic displacement at the top of the dam for different reservoir height subjected to El Centro

earthquake 1940 (S00E).
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efficient far-boundary condition, resulting in great computational advantages. (d) The matrices
involved in the solution of the system equations are decomposed into triangular forms at the
beginning of the iteration, and thereby only two forward-eliminations and back-substitutions are
required at each iteration step. Thus, the time required to obtain the coupled response for a
particular time instant is minimized.
The flexibility property of the structures may alter the behaviour of the fluid domain

significantly. There is a common belief that in case of rigid structures, the magnitude of the
hydrodynamic pressure becomes high. But this is not always true. The magnitude of the
hydrodynamic pressure may increase significantly for the flexible structures as well. Moreover, if
the resonance between the two systems occurs, the developed hydrodynamic pressure may
increase manifold. Hence, the structures, exposed to fluid media are to be analyzed, paying due
considerations to these aspects.

Appendix A. Development of truncation boundary condition

The specification of the far-boundary condition is one of the most important features in the
development of reservoir model due to the fact that the hydrodynamic pressure on the structure is
highly sensitive to the behaviour of the infinite region of the reservoir. In order to consider the
effect of radiation damping, it is assumed that at infinitely large distance away from the structure,
developed hydrodynamic pressure becomes zero. If the unbounded fluid domain is truncated at a
sufficiently large distance away from the region of interest, Sommerfeld radiation boundary [5] is
normally used at the truncation surface. Some recent studies [29] based on the frequency-domain
analysis of two dimensional unbounded fluid reservoirs, have indicated that the Sommerfeld
damper does not truly represent the effects of radiation damping, particularly when the excitation
frequency is less than the second natural frequency of the reservoir. Such a range of excitation
frequencies is of greater practical importance, as in the analysis of structures subjected to seismic
loadings. The proposed boundary condition along the truncation surface is derived on the basis of
the following assumptions (Fig. 1):

(i) The bottom of the fluid domain is horizontal and rigid.
(ii) The fluid–structure interface is vertical.
(iii) The fluid domain extends to infinity and its motion is two dimensional.

The following assumptions are made for the development of truncation boundary condition:

@p

@n
ð0; y; tÞ ¼ �rf aeiot; ðA:1Þ

@p

@n
ðx; 0; tÞ ¼ 0 ðA:2Þ

pðx;H; tÞ ¼ 0 ðA:3Þ

pðN; y; tÞ ¼ 0 ðA:4Þ
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The general solution of Eq. (1) satisfying Eqs. (A.1)–(A.4), hydrodynamic pressure at any point
ðx; yÞ is given by

p ¼
4rf aH

p

XN
m¼1

ð�1Þmþ1

ð2m � 1Þfm

eð�fmx=HÞ cos lm
y

H

� �
eiot; ðA:5Þ

where

lm ¼
ð2m � 1Þp

2
; fm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2m � O2

q
and O ¼ oH=C: ðA:6Þ

Here a is the acceleration of the solid surface normal to the outwardly drawn. The partial
derivative of the hydrodynamic pressure with respect to x considering Eq. (A.5) is given by

@p

@x
¼ �

4rf a

p

XN
m¼1

ð�1Þmþ1

2m � 1
eð�fmx=HÞ cos lm

y

H

� �
eiot: ðA:7Þ

From Eqs. (A.5) and (A.7), the following equation is obtained:

@p

@n
¼

@p

@x
¼ �

p

H
z; ðA:8Þ

where p is the pressure of the fluid domain and z is given by

z ¼ �

P
N

m¼1

ð�1Þmþ1

2m � 1
eð�fmx=HÞ cos lm

y

H

� �
P

N

m¼1

ð�1Þmþ1

ð2m � 1Þfm

eð�fmx=HÞ cos lm
y

H

� �: ðA:9Þ

To get the effect of unbounded fluid domain in the truncation surface, z is determined
numerically assuming m to be a large number.

Appendix B. Nomenclature

a acceleration of the fluid–structure interface in the normal direction
{B} vector represents the boundary conditions of the fluid domain
{Bf} boundary conditions at the free surface of the fluid domain
{Br} boundary conditions at the fluid–reservoir bed interface
{Bs} boundary conditions at the fluid–structure interface
{Bt} boundary conditions at the truncation surface of the fluid domain
{ %B} strain displacement matrix
C acoustic speed of the fluid
c pressure coefficient in the fluid domain
½C� damping matrix of the structure
½D� constitutive matrix of the structure
E modulus of elasticity of the structure
{Fe} vector for time-dependent external forces
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{Fh} vector for hydrodynamic forces
H height of the fluid domain
½K � stiffness matrix of the structure
L length between fluid–structure interface and truncation surface
m any number
½M� mass matrix of the structure
½N� shape function matrix
p hydrodynamic pressure in the fluid domain
{ %p} vector for pressure at the element nodes
’p derivative of pressure with respect to t

.p double derivative of pressure with respect to t
t time
T time period
Ui displacement at ith node
.Ug ground acceleration
Dt time step
e a preassigned small value
z coefficients at the truncation surface in the fluid domain
rf mass density of fluid
rs mass density of structure
o circular frequency of vibration
n the Poison ratio
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